
 

   

 
Abstract— Solving the inverse problems, especially in the field 

of heat transfer, is one of the challenges of engineering due to its 

importance in industrial applications. It is well-known that inverse 

heat conduction problems (IHCPs) are severely ill-posed, which 

means that small disturbances in the input may cause extremely 

large errors in the solution. This paper introduces an accurate 

method for solving inverse problems by combining Tikhonov's 

regularization and the genetic algorithm. Finding the 

regularization parameter as the decisive parameter is modelled by 

this method, a few sample problems were solved to investigate the 

efficiency and accuracy of the proposed method. A linear sum of 

fundamental solutions with unknown constant coefficients 

assumed as an approximated solution to the sample IHCP problem 

and collocation method is used to minimize residues in the 

collocation points. In this contribution, we use Morozov's 

discrepancy principle and Quasi-Optimality criterion for defining 

the objective function, which must be minimized to yield the value 

of the optimum regularization parameter. 

 
Keywords— Inverse Heat Transfer Problems, Tikhonov regularization, 

Genetic algorithms, III-Posed Problems, Morozov's discrepancy principle 

and Quasi-Optimality.  

I. INTRODUCTION 
NVERSE heat conduction problems have broad applications 
in technological and scientific fields [1]. The primary 

purpose of solving these types of problems is to obtain solution 
indirectly. The main reason for the emergence of the inverse 
heat transfer problems is not knowing boundary conditions or 
difficulty in accessing boundaries. Therefore, to solve the 
problem without having boundary conditions, it is necessary to 
have additional information, which is usually obtained by the 
sensors installed in an accessible place. Therefore, with 
empirical data, it is possible to estimate the conditions needed 
to solve the problem without direct measurements or access to 
boundary locations. In direct heat transfer problems, geometry, 
boundary conditions, initial conditions, and thermo-physical 

                                                 
 

properties are known, and the purpose is to calculate the 
temperature distribution inside the solution domain. In the case 
of inverse heat transfer, one or some information are unknown, 
and the objective is to estimate them by using additional 
information such as the measured temperatures inside the 
solution domain. 
  The main difficulty in solving inverse problems is that they are 
almost always severely ill-posed. According to Hadamard [2], 
a problem is called well-posed if it has a unique solution which 
continuously changes with input data. The inverse solution is 
extremely sensitive to measurement errors, and even the 
smallest in inputs may cause a significant error in the final 
approximation of the boundary conditions, therefore, 
regularization is required for solving inverse problems. 
Since IHCPs are incredibly diverse, their solution also requires 
different strategies. The solution of  IHCPs can be classified 
into three different classes: analytical, numerical, and 
experimental solutions. Of course, in some cases, a combination 
of the mentioned methods can be used for solving the problem. 
Analytical methods are often useful in solving linear problems, 
but numerical methods such as the finite difference method, 
finite element method, and boundary elements are applied in 
solving nonlinear and multidimensional problems. 
In 1960, Stols solved the problem of transient heat conduction 
analytically and showed that frequent use of tiny time steps 
results in instability in the solution of such problems [3]. It can 
be seen that using small time steps has the opposite effect on 
inverse heat conduction problems (IHCPs) compared to 
numerical solutions of the direct heat conduction equation. 
Tikhonov and Arsenin introduced Tikhonov and Iterative 
Regularization Methods [4]. This method is usually provided as 
a whole domain solution in which all the parameters of heat flux 
are estimated for all times and spatial locations simultaneously. 

Another method that uses the regularization technique is the 
conjugate gradient method with an adjoint problem, which is 
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developed and suggested in detail by Alifanov[5], Zisnik and 
Orlande [6]. The conjugate gradient method minimizes an 
objective function at each iteration through choosing a new 
guess by taking the old assumption and tacking on an additional 
term that pushes the solution closer to the optimal one. This 
regularization method can also be used to solve linear and 
nonlinear inverse problems or parametric estimations. 

There are various analytical and numerical approaches in 
the literature for solving IHCPs. Moreover, a specific solution 
for a particular problem cannot be applied to other problems. 
The special sequential function developed by Beck [7], is a 
sequential method stepping forward in time, based on least-
squares method and Duhamel theorem. The complicated 
mathematics in estimating components of the heat flux in 
different times and spatial locations is a fundamental problem 
in the mentioned algorithm. Hensel did some research on the 
analytical transfer function to solve inverse heat conduction 
problems. He presented an inverse heat method for a one-
dimensional case using an adjoint algorithm with a frequency 
domain [8].  

Lesnic et al. proposed another way to solve the IHCPs. In this 
method, the least-squares regularization and energy method 
have been introduced into the boundary element method (BEM) 
formulation. The numerical results obtained using this 
technique has the advantage of not needing to mesh generation 
in all domain, unlike the finite element method or finite 
difference method [9]. 

Yeun et al. dealt with the smooth fitting problem using the 
genetic programming algorithm, they presented a novel 
approach for choosing the regularization parameter and 
compared the result with general cross-validation (GCV) B-
Splines [10]. 

Several researchers have proposed combinations of the 
method to minimize the problems involved in measuring errors 
[11]. Keynini et al. [12] have proposed a modified sequential 
function for solving the stability of parabolic thermal 
conduction problem. This method uses computational steps that 
are larger than the sample intervals, and future time intervals 
are all set equal to the time interval in the data. 

Slota et al. [13] combined the Tikhonov regulation method 
and the particle swarm optimization algorithm, which is a 
stochastic optimization method, for approximating the heat 
source without the prior information of the functional form in 
temperature-dependent unsteady heat conduction problem and 
compared the results with the conjugate gradient method. 

Ajith et al.  [14] attempted to develop a general guideline 
for designing the high-temperature heaters by investigating 
modeling tools through different approaches such as lattice 
Boltzmann method (LMB), finite volume method and genetic 
algorithm. Stephany et al. [15] formulated the inverse radiative 
transfer problem and solved it through ant colony optimization 
(ACO) with the Levenberg–Marquardt (LM) method. Their 
result shows that this hybridization method results in a better 
reconstruction at a lower processing time. 

Singh and Das analyzed the thermal behavior of the fin 
when thermophysical parameters are varied. They used 
approximate analytical Adomian decomposing method to solve 

the nonlinear problem along with the Newton–Raphson method 
[16]. Some researchers used the conjugate gradient method to 
estimate the unknown time-dependent heat flux and time and 
spatially dependent heat fluxes at the interface of two 
contacting surfaces and even parallel plate channel [17-20]. 
Dong et al. applied coupled methods  (least square QR 
decomposition (LSQR)-Genetic Algorithm (GA) and truncated 
singular value decomposition (TSVD) method- Genetic 
Algorithm (GA) to investigate the performance of this method 
on temperature distribution in the participating medium [21]. 
For some samples, even combinational methods with non-
optimal regularization parameters can be more accurately 
solved than results obtained by LSQR or TSVD [17, 22]  

In 2015, Udayraj et al. [23] compared the efficiency and 
feasibility of three metaheuristic algorithms for a class of heat 
transfer problems.  The result showed that, Ant colony 
optimization algorithm has the best performance for estimation 
of transient heat flux boundary condition, It followed by 
Particle swarm optimization and Cuckoo search algorithms. 
Sun et al. [24] applied krill herd (KH) algorithms for solving 
inverse geometry design problems. Based on reported result, 
the KH algorithm has better performance and efficiency for 
solving this kind of problem in comparison with micro genetic 
algorithm and particle swarm optimization algorithms.  

In this research, the method of Tikhonov regularization is 
combined with the genetic algorithm to solve the inverse 
problem. A genetic algorithm is used to find the regularization 
parameter, which is the main problem of regularization 
methods.  

II. THEORY 
As mentioned in the previous section, the definition of a well-

posed problem was introduced by Jacques and Hadamard for 
the first time, in order to understand what kind of boundary 
conditions should be used for different types of differential 
equations [25]. Based on this definition, a well-posed 
mathematical problem has a unique solution which changes 
continuously with initial conditions. Therefore, if one of these 
conditions is not satisfied, the problem will be ill-posed. Stable 
numerical differentiation of noisy data, stable inversing of ill-
posed matrices, parameter determination in a partial differential 
equation, first order homogenous differential equations are 
examples of ill-posed problems.  

Consider the following ill-posed problem in which 𝐾 is a 
linear bounded operator from 𝑋 into 𝑌 

 
𝐾𝜃 = 𝑊,𝐾: 𝑋 →𝑌 (1) 
 
Suppose that the right side is given with its approximation 

𝑊𝛿   in such a way that ‖𝑊 −𝑊𝛿‖ ≤ 𝛿 . Naturally, we need to 
find the approximate answer in the set 𝑄𝛿: {𝜃 ∈ 𝑋: ‖𝐾𝜃 −
𝑊𝛿‖ ≤ 𝛿}. In any case, in an ill-posed problem, we cannot 
take an arbitrary element𝑥𝛿 ∈ 𝑄𝛿  as an approximate solution for 
problem (1), because 𝜃𝛿  does not change continuously 
as 𝑊𝛿  changes. Satisfying equation ‖𝐾𝜃 −𝑊𝛿‖ ≤ 𝛿   does not 
guarantee that 𝜃𝛿  is close to the desired response 
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Theorem 1: Suppose that, 𝐾 is a bounded linear operator 
between Hilbert spaces 𝑋 to 𝑌 [26] and then 𝐽𝛼 has a unique 
minimum in 𝜃𝛿 ∈ 𝑋 , the minimum is the unique solution of the 
normal equation 𝜆𝜃𝜆 + 𝐾∗𝐾𝜃𝜆 = 𝐾∗𝑊 In which, for all  𝑥 𝜖 𝑋 
, 𝐽𝜆(𝜃) = ‖𝐾𝜃𝜆 −𝑊‖22 + 𝜆‖𝜃𝜆‖22   is defined as Tikhonov's 
function. 𝑅𝜆: 𝑌 → 𝑋, 𝑅𝜆 = (𝜆𝐼 + 𝐾∗𝐾)−1𝐾∗. It can be proved 
that the operators form a regularization strategy with 

𝑙𝑖𝑚
𝜆→0

‖𝑅𝜆𝐾𝜃𝑒 − 𝜃𝑒‖ ≤ 𝑙𝑖𝑚
𝜆→0

‖𝑧‖√𝜆

2
, 𝜃𝑒 = 𝐾∗𝑧 ∈ 𝐾 ∗ (𝑌), 𝑧 ∈ 𝑌. 

This method is called Tikhonov's regularization. After 
approximation, the result will be:  

 

‖𝜃𝜆,𝛿 − 𝜃𝑒‖ ≤
𝛿

2√𝜆
+
‖𝑧‖√𝜆

2
:= 𝐸(𝜆) (2) 

 
Theoretically, although ‖𝑧‖ is not known, we can minimize 

the 𝐸(𝜆) function to find the optimal value for the ‖𝑧‖  
regularization parameter, e.g., in the posteriori method for 
choosing parameter 𝜆 which is called Morozov's discrepancy 
principle the value of is not required. 

Choosing an appropriate regularization parameter is a critical 
part of achieving an optimal response. The most commonly 
used methods for selecting the regularization parameter are as 
follows.  

A. Morozov's discrepancy principle 

In this method, it is proposed that 𝜆(𝛿) > 0   be calculated in 
such a way that the Tikhonv solution which corresponds to the 
following equation 

 
𝜆𝜃𝜆,𝛿 + 𝐾

∗𝐾𝜃𝜆,𝛿 = 𝐾
∗𝑊𝛿  (3) 

 
which is the minimizer of the following functional 
 
𝐽𝜆,𝛿(𝜃𝜆,𝛿):= ‖𝐾𝜃𝜆,𝛿 −𝑊𝛿‖

2
+ 𝜆‖𝜃𝜆,𝛿‖

2
 (4) 

 
Satisfies  

 
‖𝐾𝜃𝜆,𝛿 −𝑊𝛿‖ = 𝛿 (5) 
 
Therefore, 𝜆 choosing in this condition is sufficient to ensure 

that, on othe ne hand, the difference is equal to δ and, on the 
other hand, 𝜆 is not too small [23]. 

 

B. Quasi-Optimality criterion 

The Quasi-Optimality criterion  [27] determines the value 
𝜆 > 0  in such a way that 

 
‖𝐾𝜃𝜆,𝛿 −𝑊𝛿‖ = 𝛿 (6) 
 
To obtain the regularization parameter, Morozov's 

discrepancy principle and Quasi-Optimality criterion are used 
which the former requires the disturbance amplitude that the 
second does not require. We can use derivatives, or different 
numerical root finding can be used to optimize the objective 

functions of these two criterions, but doing this for any criterion 
requires separate calculations and derivation and root finding 
that complicates the work and raises computational costs, at the 
same time, there is no guarantee that the algorithm implemented 
converges. This paper presents a new high-precision meta-
heuristic algorithm, which is easy to modify and doesn't 
produce complications when the objective function changes, 
which then is applied to a sample problem. Clearly, the solution 
in Tikhonov's regularization depends on the regularization 
parameter, which directly affects the degree of approximation 
and the stability of the solution. In terms of approximation, the 
smaller the 𝜆 is the better and‖𝜃𝜆 − 𝜃𝑒‖ will have a smaller 
value in a stable solution; but from the stability point of view, 
the bigger the 𝜆 is the better. The key in solving Tikhonov's 
regularization method is to achieve optimal value for the 
regularization parameter. 

The regularization parameter in Morozov's discrepancy 
principle is chosen in a way that: 

 
‖𝐾𝜃𝜆 −𝑊𝛿‖2

2 = 𝛿2 (7) 
 
On the other hand, in the Quasi-Optimality criterion, the 

optimal regularization parameter is the minimizer of the 
following objective function 

 

𝛬(𝜆) =
1

𝜆2𝑊𝛿
𝑇𝐾(𝐾𝑇𝐾 + 𝜆𝐼)−4𝐾𝑇𝑊𝛿

 (8) 

 
Unlike Morozov's discrepancy principle, in the Quasi-

Optimality criterion, the magnitude of perturbations is not 
required. In this paper, a genetic algorithm is used to find the 
optimal regularization parameter. The aim is to optimize one of 
the two following objective functions for obtaining the optimal 
value of the regularization parameter. 

 
𝛤(𝜆) = |‖𝐾𝜃𝜆 −𝑊𝛿‖2

2 − 𝛿2| (9) 

𝛬(𝜆) =
1

𝜆2𝑊𝛿
𝑇𝐾(𝐾𝑇𝐾 + 𝜆𝐿)−4𝐾𝑇𝑊𝛿

 (10) 

 
Initially, a population of monogenic chromosomes which 

their gene value is 𝜆 is created, then by having the value of 𝜆 
for each chromosome, 𝛼𝜆is calculated for each chromosome. 
Using 𝜃𝜆, the value of the objective functions Г(𝜆) and 𝛬(𝜆) are 
calculated for each chromosome.  Crossover and mutation 
operations are performed to create offspring and mutated 
chromosomes and the value of the objective functions are 
calculated for them. The chromosomes are ranked according to 
the value of their objective function then, the best chromosomes 
make up the second generation according to their rank, all of 
these operations are carried out again for the second generation. 
The genetic algorithm continues till the termination criterion is 
satisfied. After stopping the algorithm, the chromosome which 
has the lowest value of the cost function in the last generation 
is the solution and its gene is the optimal regularization 
parameter 𝜆𝑜𝑝𝑡 . Figure.1 depicts the schematic of solving an 
inverse heat conduction problem using the proposed algorithm 
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in this paper. 
 
 

 
Fig. 1 Schematic of solving an inverse heat conduction problem using 

the algorithm provided in this paper 
 

C. Solving the sample heat conduction problem using the 

proposed algorithm 

Figure 2 illustrates an inverse heat conduction problem 
investigated in this paper. The energy equation, boundary and 
initial conditions for this problem is written as follows: 

 

{
 
 

 
 
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
−
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
= 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0

𝑢(0, 𝑡) = 𝑒−𝜋
2𝑡 , 𝑡 ≥ 0

𝑢(1, 𝑡) = −𝑒−𝜋
2𝑡 , 𝑡 ≥ 0

𝑢(𝑥, 0) = 𝑐𝑜𝑠(𝜋𝑥) , 0 ≤ 𝑥 ≤𝐿 =1

 (11) 

 
Analytical solution of this problem is 𝑢(𝑥, 𝑡) =

𝑐𝑜𝑠( 𝜋𝑥)𝑒−𝜋
2𝑡 , 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0. For two reasons, this 

problem has been used to define the inverse problem; First, it 
has a relatively large coverage factor 𝑒−𝜋2𝑡  which, by 
increasing  the value of final time, i.e., increasing the value of 

𝜏, makes solving the problem more difficult and the matrix of 
coefficients much more ill-conditioned and as time increases, 
and the response approaches to  its steady state quickly. Second, 
this problem has been used as a standard example in research 
papers to investigate the accuracy and stability of the 
regularization algorithms. Using the exact solution of problem 
(11) in order to obtain the additional conditions, the inverse 
problem is defined as: 

 

{
 
 

 
 
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
−
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
= 0 ≤ 𝑥 ≤ 1,0 ≤ 𝑡 ≤ 𝜏

𝑢(0, 𝑡) = 𝑓(𝑡) = 𝑒−𝜋
2𝑡 , 0 ≤ 𝑡 ≤ 𝜏

𝑢(1, 𝑡) = 𝑔(𝑡) = −𝑒−𝜋
2𝑡 , 0 ≤ 𝑡 ≤ 𝜏

𝑢(𝑥, 𝜏) = 𝛺(𝑡) = 𝑐𝑜𝑠( 𝜋𝑥) 𝑒−𝜋
2𝜏 , 0 ≤ 𝑥 ≤1

 (12) 

 
The approximate answer is formed using fundamental 

solutions as follows [28] 
 

𝑈
∗

(𝑥, 𝑡) = ∑𝛼𝑙𝛹𝑙(𝑥, 𝑡)

𝑓

𝑙=1

=∑𝛼𝑙
𝐻(𝑡 + 𝑡0)

2√𝜋(𝑡 + 𝑡0)
𝑒
(𝑥−𝑥𝑙)

2

4(𝑡+𝑡0)

𝑓

𝑙=1

 

𝑥𝑙 = (
𝑙 − 1

𝑓 − 1
) , 𝑙 = 1, . . . , 𝑓 

 

(13) 

𝑡0 is a parameter that is equal to the value of final time 𝜏 in 
our calculations.   𝑥𝑙    will be uniformly distributed in [0 1]. To 
investigate the stability of the problem, the noise level entered 
into the additional condition is considered to be 0, 1,3 and 10 
percent.  

 

 
Fig. 2 Schematic of the IHCP examined in this paper 

 
 
The collocation points are defined as 
 
(𝑥𝑖 , 𝑡𝑖)

=

{
 
 
 
 

 
 
 
 
(0, (

𝑒−𝑠(𝑖) − 1

𝑒−1 − 1
𝜏)) , 𝑠( 𝑖) =

𝑖 − 1

𝑚 − 1
, 𝑖 = 1, . . , 𝑚

(1, (
𝑒−𝑠(𝑖) − 1

𝑒−1 − 1
𝜏)) , 𝑠( 𝑖) =

𝑖 −𝑚 − 1

𝑚 − 1
, 𝑖 = 𝑚 + 1, . . . ,2𝑚

(
𝑖 − 2𝑚 − 1

𝑟 − 1
, 𝜏) , 𝑖 = 2𝑚 + 1, . . . ,2𝑚 + 𝑟

 (14) 

 
The genetic algorithm is used to minimize objective 

 

 

Calculate missing coefficients 𝛼𝑖 by having 𝜆𝑜𝑝𝑡 
and proving an answer with 
 𝑈
∗
(𝑥, 𝑡) =  𝛼𝑖𝛹𝑖(𝑥, 𝑡)

𝑓
𝑖=1 

 Consider the estimated solutions as
 

 
Putting the estimated solution in differential 

equations, boundary conditions, final values and 
residual estimation  

 

 Using the overlapping method to minimize the 
residual value and finding the linear equation 

system  𝐾𝛼 = 𝑊  
 

 Apply disturbances and obtain equation as  𝐾𝛼 = 𝑊𝛿 

Applying Tikhonov's Regularization and the 
implementation of the genetic algorithm to 

minimize one of the two objective functions 
𝛤(𝜆) = |‖𝐾𝛼𝜆 −𝑊𝛿‖2

2 − 𝛿2| 

𝛬(𝜆) =
1

𝜆2
𝑊𝛿

𝑇𝐾(𝐾𝑇𝐾 + 𝜆𝐿)−4𝐾𝑇𝑊𝛿  
 

 

 

𝒖(𝑳, 𝒕) = 𝒆−𝝅
𝟐𝒕 𝒖(𝟎, 𝒕) = 𝒆−𝝅

𝟐𝒕 𝒖𝒕 − 𝒖𝒙𝒙 = 𝟎 

𝒖(𝟎, 𝝉) = 𝒄𝒐𝒔(𝝅𝒙)𝒆−𝝅
𝟐𝒕 

𝑳 
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functions Г, 𝛬. The initial population consists of 25 
chromosomes, each chromosome has only one gene, which is 
the value of regularization parameter 𝜆. For the selection 
process, we use the roulette wheel, the maximum number of 
generations is 500, which is considered as the stopping 
algorithm criteria. 

In order to investigate the accuracy of the approximate 
solution, the error is defined on the collocated points on the 
boundary at 𝑡 = 0 as: 

 

𝑒𝑟𝑟𝑜𝑟(𝑥𝑖) = 𝑈
∗

(𝑥𝑖 , 0) − 𝑢𝑒𝑥𝑐(𝑥𝑖 , 0) (15) 
 
In which  𝑢𝑒𝑥𝑐(𝑋𝑖 , 0) = cos (𝜋𝑋𝑖) the above equation shows 

the error distribution as a function of 𝑋. The average error in 
the entire domain is calculated as: 

 

𝑒𝑟𝑟𝑜𝑟(𝑥𝑖) = 𝑈
∗

(𝑥𝑖 , 0) − 𝑢𝑒𝑥𝑐(𝑥𝑖 , 0) (16) 
 
Where r is the number of collocation points on the boundary 

𝑡 =  0. 

III. RESULT 
Regularization is done for 𝑚 = 18, 𝑟 = 18 (𝑛 = 54 

collocation points), 54 no. of trial functions (𝑓 = 54) and final 
time 𝜏 = 0.1. The result of genetic calculations and 
convergence of objective functions are discussed in this paper. 
The performance of the Quasi-Optimality criterion and the 
Morozov's discrepancy principle are also compared at the 
desired time. The approximated solutions will be compared 
with each other and with the exact solution. 

 

A. Results for different values of noise levels 

The value of converged Morozov and Quasi- Optimality 
objective functions using a genetic algorithm for noise = 1% 
are respectively equal to  Г(𝜆𝑜𝑝𝑡)  ≈ O (10−16) and 
   𝛬(𝜆𝑜𝑝𝑡) ≈  𝑂 (10

−10), But this does not mean that the 
optimal regularization parameter of the Morozov's discrepancy 
principle is better, But in general, the objective function of the 
Quasi-Optimality criterion converges to larger amounts in 
respect to the Morozov's objective function. Despite better 
convergence patterns for Morozov's objective function in 
comparison with Quasi-Optimality criteria, it is clearly evident 
in Figure 3 that using regularization parameter 𝜆𝑜𝑝𝑡 obtained 
from the quasi-optimal criterion, the approximate solution is 
generally closer to the exact one.   

 

 
Fig. 3 Comparison of the approximate solution obtained using Quasi-

Optimality and Morozov's regularization parameter with the exact 
solution for noise =  1% and 𝜏 = 0.1 and 𝑛 =  54 and 𝑓 =  54 
 

 
Fig. 4 Comparison of the approximate solution obtained using Quasi-

Optimality and Morozov's regularization parameter with the exact 
solution for noise =  3% and 𝜏 = 0.1 and 𝑛 =  54 and 𝑓 =  54 
 
Same as disturbance level at noise = 1%; with an increase to 

3%, the accuracy of the Quasi-Optimality criterion is much 
higher than the Morozov's discrepancy principle. In calculating 
Tikhonov's regularization coefficient using a genetic algorithm, 
increasing the population size will increase the required time it 
takes to calculate each generation, at the same time it reduces 
the number of generations needed to achieve optimal 
achievable value for regularization parameter. In various runs 
of the code, it can be seen that initial population growth did not 
affect improving the final value of the objective function. As a 
result, there was no need to increase the population size and 
examine its impact on noise levels. 

The Quasi-optimality criterion results in less error and is a 
more precise method. The optimal parameters of the two 
methods differ significantly, as shown in the Table. 1. By 
increasing the noise level to 3%, the accuracy of the Quasi -
optimality criterion is still much better than Morozov's 
discrepancy principle as shown in Table. 2. 

The value of average error increases as the norm of noise 
increases. Interestingly, by the rise in disturbance norms, the 
average error of the Morozov method has decreased, although 
the Quasi -optimality criterion is more precise. Various 
methods for choosing the regularization parameter in different 
problems have different accuracies. 
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Table1. Comparison of the quasi-optimality criterion and the 
Morozov's discrepancy principle for 𝑚 =  𝑟 =  18, 𝑓 =  54,  

noise =  1%, and 𝜏 = 0.1 
𝛿 ME, 

||𝐸𝑟𝑟𝑜𝑟|| 
Objective function 

in genetic code 
𝜆𝑜𝑝𝑡 in 

genetic code Criterion 

0.0645 0.2397, 
1.1025 5.20 × 10−17 9.32 × 10−9 Morozov 

0.0645 0.0334, 
0.1570 2.79 × 10−9 0.0419 quasi-optimality 

 
Table2. Comparison of the quasi-optimality criterion and the 

Morozov's discrepancy principle for 𝑚 =  𝑟 =  18, 𝑓 =  54,  
noise =  3%, and 𝜏 = 0.1 

𝛿 ME, 
||𝐸𝑟𝑟𝑜𝑟|| 

Objective function 
in genetic code 

𝜆𝑜𝑝𝑡 in genetic 
code Criterion 

0.1872 0.18, 
0.8276 0 0.0021 Morozov 

0.1872 0.0271, 
0.1346 3.06×10-9 0.0301 quasi-optimality 

 
Naturally, increasing the level of disturbance in a continuous 

solution will increase the error in the output. But using 
Morozov's discrepancy principle by increasing the level of 
disturbances, the error value decreases in the most collocation 
points. In Quasi -optimality criterion, by increasing levels of 
disturbances, the error value increases subsequently and at the 
same time, remains at an acceptable level. Although this 
criterion does not require the extent of disturbance range or    
‖𝑊 −𝑊𝛿‖⃦2 , it has a great accuracy.  

As shown in Figure. 5a, using Morozov's discrepancy 
principle to find the optimal regularization parameter, in the 
case of a disturbance of 10% the error value in most collocation 
points will be less than 1 or 3 percent cases. Interestingly, the 
error value is the highest in the case where the disturbance level 
is 1%. Additionally, the error value is not acceptable at any 
level of disturbance.  In Figure. 5b it can be seen by increasing 
levels of disturbances, the error value increases subsequently 
and at the same time remains at an acceptable level. The use of 
Quasi -optimality criterion can also be more practical since it 
might not be possible to find the norm of error in the measured 
data used as an additional condition. 

It can be seen in Figure. 6 that, even in the presence of 10% 
noise level, which is very high and in practice in inverse 
engineering, the measurement errors are much lower than this, 
the approximate solution follows exact solution accurately 
which demonstrates the successful implementation of our 
algorithm. 

Figure 7 shows the approximate solution error on all 
collocation points. In general, the error in the internal points is 
less than the boundary collocation points. 

B. Validation 

The exact IHCP solved in this paper has not been solved in 
any paper. Therefore, to verify the method, the problem studied 
by Lesnic et al.[28] , which they used fundamental functions 
method using 60 collocation points and 20 guessed functions, 
has been solved using out algorithm. Lesnic et al. [28] assumed 
5% disturbance level and the final time 𝜏 = 0.25 and applied 
Tikhonov regularization technique and the L-curve method to 
their problem. This problem has been analysed again based on 
method presented here, the problem is defined as 

 

 
(a) 

 
(b) 

Fig. 5 The error in the collocation points on the boundary 𝑡 =  0 for 
𝑛 =  54, 𝑓 =  54, and at different noise levels, a) using the Quasi -
optimality criterion b) using the Morozov's discrepancy principle. 
 

 
Fig. 6 Accurate and approximate solution on the collocation points on 
the boundary 𝑡 =  0 for 𝑛 =  54, 𝑓 =  54, 𝜏 = 0.1 at different noise 

levels using Quasi-optimality criterion 
 

{
 
 

 
 
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
−
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
= 0 ≤ 𝑥 ≤ 1,0 ≤ 𝑡 ≤ 𝜏

𝑢(0, 𝑡) = 𝑓(𝑡) = 0,0 ≤ 𝑡 ≤ 𝜏
𝑢(1, 𝑡) = 𝑔(𝑡) = 0,0 ≤ 𝑡 ≤ 𝜏

𝑢(𝑥, 𝜏) = 𝛺(𝑡) = 𝑠𝑖𝑛( 𝜋𝑥) 𝑒−𝜋
2𝜏, 0 ≤ 𝑥 ≤1

 (17) 

 
The above problem was solved using the same parameters 

which were used by Lesnic. Figure 8 illustrates that the method 
used in this study has an accurate solution and is in proper 
compliance with the results of Lesnic et al. [28] and has a 
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precise solution. 

 
Fig. 7 Comparison between approximate solution error on all 

collocation points for 𝑛 =  54, 𝑓 =  54, 𝜏 = 0.1 in different noise 
levels using quasi-optimally criterion 

 

 
Fig. 8 Validation of the problem using quasi-optimally criterion 

assuming 𝜏 = 0.25, 𝑛 =𝑓 =60 and noise = 5%. 
 

IV. CONCLUSION 
The primary purpose of this paper is to introduce an effective 

method for solving inverse problems in combination with 
Tikhonov's Regularization and genetic algorithms. Finding the 
optimal regularization parameter in Tikhonov regularization 
has been modeled to investigate the efficiency and accuracy of 
its application in solving sample IHCPs.  Fundamental solutions 
have been used to guess estimate solution with constant 
unknowns’ coefficients, and the collocation method is applied 
to minimize the residue on the collocation points. 

The Morozov's discrepancy Principle and the Quasi-
Optimality criterion are used to define the objective functions 
which minimizing them gives the optimal parameter. Results 
show that the parameters of the Genetic Algorithm (like 
mutation rate, crossover, operator, …) should be chosen 
appropriately according to the dynamic of the problem. 
Otherwise, the results will not be sufficiently precise. Crossover 
and mutation operators play the main role in minimizing and 
changing the selection operator did not have any practical effect 
on minimizing the objective function. By increasing the number 
of collocation or nodal points, the condition number of the 

matrix of coefficients increased, and it became severely ill-
conditioned, however, if regularization applied successfully, 
the increase of nodal or collocated points results in less error in 
the estimated solution. The quasi-optimality criterion was more 
effective at smaller final times while Morozov's discrepancy 
principle was better at larger final times. The objective function 
of the Quasi-Optimality criterion minimized to lower values 
with respect to Morozov's objective function. Comparing the 
results of the proposed hybrid method presented in this paper 
with the analytical solution and the results of other researchers 
indicates the efficiency and accuracy of this method in solving 
inverse problems. 

 
Nomenclature 

𝐸𝑟𝑟𝑜𝑟 Absolute error 
𝐹 Number of fundamental functions (nodal points) 

f(t) Boundary condition at x=0 
g(t) Boundary condition at x=L 
H(t) Heaviside step function 

I Identity matrix 
𝐽𝜆(𝜃) Tikhonov's functional 
𝐽𝜆,𝛿(𝜃) Tikhonov's functional using noisy data 

𝐾 Matrix of coefficients 
𝐾∗ Adjoint of K 
𝐿 Length of the space domain 
𝑀 Number of collocation points at x=0 and x=L 
𝑀𝐸 Mean error 
𝑄𝛿 Solution set 
𝑅 Number of collocation points at 𝑡 = 𝜏 
𝑇 Time variable 

𝑢(𝑥, 𝑡) Analytical solution of temperature distribution 
𝑢𝑒𝑥𝑐(𝑥, 𝑡) Exact Temperature distribution 
𝑈∗(𝑥, 𝑡) Approximate temperature distribution 

W Right-hand side matrix (data) 
𝑊𝛿  Right-hand side matrix (noisy data) 

X Spatial variable 
𝑋, 𝑌 Hilbert spaces 
𝑋𝛿  Arbitrary element in 𝑄𝛿 
𝛿 Noise norm 
𝜃 Solution matrix 
𝜃𝛿 Regularized solution 

λ Regularization parameter 
𝜆𝑜𝑝𝑡 Optimum regularization parameter 
𝜃𝛿,𝜆 Regularized solution using noisy data 
𝜏 Final time 

𝛬(𝜆) Quasi-optimality objective function 
𝛤(𝜆) Morozov objective function 

𝛹𝑖(𝑥, 𝑡) Fundamental functions 
𝛺(𝑥) Additional condition at 𝑡 = 𝜏 
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